Experimental investigation of stochastic parafoil guidance using a graphics processing unit
نویسندگان
چکیده
Control of autonomous systems subject to stochastic uncertainty is a challenging task. In guided airdrop applications, random wind disturbances play a crucial role in determining landing accuracy and terrain avoidance. This paper describes a stochastic parafoil guidance system which couples uncertainty propagation with optimal control to protect against wind and parameter uncertainty in the presence of impact area obstacles. The algorithm uses real-time Monte Carlo simulation performed on a graphics processing unit (GPU) to evaluate robustness of candidate trajectories in terms of delivery accuracy, obstacle avoidance, and other considerations. Building upon prior theoretical developments, this paper explores performance of the stochastic guidance law compared to standard deterministic guidance schemes, particularly with respect to obstacle avoidance. Flight test results are presented comparing the proposed stochastic guidance algorithm with a standard deterministic one. Through a comprehensive set of simulation results, key implementation aspects of the stochastic algorithm are explored including tradeoffs between the number of candidate trajectories considered, algorithm runtime, and overall guidance performance. Overall, simulation and flight test results demonstrate that the stochastic guidance scheme provides a more robust approach to obstacle avoidance while largely maintaining delivery accuracy. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملRobust Parafoil Terminal Guidance Using Massively Parallel Processing
Terminal guidance of autonomous parafoils is a difficult problem in which wind uncertainty and system underactuation are major challenges. Existing strategies almost exclusively use impact error as the criterion for optimality. Practical airdrop systems, however,must also includeother criteria thatmaybe evenmore important than impact error for somemissions, such as ground speed at impact or con...
متن کاملImprovement and parallelization of Snort network intrusion detection mechanism using graphics processing unit
Nowadays, Network Intrusion Detection Systems (NIDS) are widely used to provide full security on computer networks. IDS are categorized into two primary types, including signature-based systems and anomaly-based systems. The former is more commonly used than the latter due to its lower error rate. The core of a signature-based IDS is the pattern matching. This process is inherently a computatio...
متن کاملStochastic Simulations with Graphics Hardware: Characterization of Accuracy and Performance
Methods to implement stochastic simulations on the Graphics Processing Unit (GPU) have been developed. These algorithms are used in a simulation of micro and nano assembly with optical tweezers, but are also directly compatible with simulations of a wide variety of assembly techniques using either electrophoretic, magnetic or other trapping techniques. Significant speedup is possible for stocha...
متن کامل